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TECHNICAL REPORT FOR GRANT No.: N00014-93-1-1007 
University of Maine 

ADC TEST SUPPORT PROGRAM 
Period of 1 Nov 93 Through 31 Oct 94 

Principal Investigator:  Fred H Irons 
co-Investigator:  Donald M. Hummels 

Summary 

This report summarizes accomplishments made under Grant No.: 
NO0014-93-1-1007 for providing ADC Test Support to the ARPA HBT/ADC 
technology development program during the period of 1 Nov through 
31 Oct 94. The following were accomplishments for this period. 1) 
Recruited and trained one graduate assistant to study ADC architec- 
tures and error modeling procedures. 2) Participated in the ARPA 
HBT/ADC design review on 2 6 Apr 94 and presented initial results 
relating ADC error basis functions to specific error phenomena. 
These results represent new procedures and ways to characterize 
ADCs based upon architectural error models. 3) Recruited an 
advanced graduate student in Jun 94 to begin implementation of 
orthogonal search procedures to facilitate ADC error modeling with 
the use of many-element basis sets. This student has recently 
started to develop simulation procedures for Delta-Sigma ADC 
architectures and their error effects. 4) Visited Lincoln 
Laboratory on 28 Jul 94 to review status of probe testing hardware 
development and prototype testing and evaluation plans.^ 5) 
Obtained and evaluated raw data samples obtained from Lincoln 
Laboratory for a 4-bit TRW prototype sampled at 1 GHz. 6) Wrote 
and submitted two papers for the 1995 IEEE International Symposium 
on Circuits and Systems dealing with ADC error modeling procedures 
developed under this program. 
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1.   Introduction 

The objective of this program is to support the ARPA Hetero- 
junction Bipolar Technology/Analog-to-Digital Converter (HBT/ADC) 
program with independent component testing and evaluation. The 
University of Maine will collaborate with the HBT/ADC contractors, 
ARPA, MIT Lincoln Laboratory, and the Mayo Foundation to establish 
packaging and measurement guidelines for the independent testing of 
components developed under the ARPA program. In addition, this 
program is to give some consideration and support to the applica- 
tion of high performance ADCs to new and developing commercial and 
military applications. 

This report summarizes accomplishments for the period spanning 
1 Nov 93 through 31 Oct 94. It should be pointed out that there 
was a funding gap over this same period and the gap spanned the 
period from 1 Nov 93 to 25 May 94. Nevertheless, in Sep 93, a top 
ranking graduate student was recruited, assigned to this program, 
and trained in the modeling and understanding of different ADC 
architectures. This student was instrumental in helping to obtain 
results presented at the April 94 ARPA review and he is now 
currently deeply involved with Folding Amplifier Interpolating 
structures that are proposed for the 3-GHz ADC designs. 

A second student was recruited at the beginning of the 1994 
Summer Session. This second student possesses advanced software 
programming skills and expertise particularly in dealing with extra 
large numbers of unknowns in the parameterization of iterative 
solutions to complex problems. This assistant is involved with 
constructing more elaborate search techniques to solve for ADC 
error functions and in addition, he is developing a framework_for 
simulating and studying the error effects of the Delta-Sigma 
converter which is proposed to be used in a 100 MHz, 12-bit ADC 
design. This is an important step for our effort, as we have not 
previously considered the use of the Delta-Sigma architecture in 
our modeling of ADC errors. 

We have maintained close contact with Lincoln Laboratory over 
the past year so as to understand the progress of program specific 
prototype developments, to participate in the evaluation of 
measured data, to keep abreast of design tradeoffs that are being 
made with regard to ADC architectures, and to share results from 
the development of new test procedures as they occur in our 
program. 

The remaining discussion provides more details for program 
accomplishments as listed in the above Abstract for this report. 
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2.   UMaine Contribution at the April Review 

The UMaine contribution to the past April Review for the 
HBT/ADC program is reviewed in this section. Several new concepts 
for understanding the characterization of ADC errors were presented 
at this meeting. 

A highlight for the year was the discovery that one error 
function could be used to compensate different ADCs of the same 
production model, or type. For many years, the value of dynamic 
compensation has been regarded with suspicion due to the opinion 
that complex error functions would have to be determined for each 
ADC, and also that error functions would have to be periodically 
updated in order to be of any value. Since the published proce- 
dures have generally involved lengthy post-processing of large 
amounts of data, ADC designers have not pursued these procedures 
with much hope that they would be very useful. However, the 
determination of error as a function of signal state and slope has 
progressed to the point where generic system errors are accurately 
represented by current error functions and test procedures. At 
least this was found to be true for the 8-bit Tektronix AD20 tested 
at a sampling frequency of 204.8 MSPS. 

The graph shown in Fig.l presents measured results for the 
TKAD20 using test signals that span the first Nyquist band. The 
graph shows the spurious free dynamic range (SFDR) for both 
compensated and uncompensated data. The SFDR is one figure of 
merit used to characterize the dynamic performance of an ADC. 
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Fig.l SFDR for three ADCs using the same error model 
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The ADCs used to obtain the data shown in Fig.l came from two 
different production batches separated by more than a year in time. 
A single error function is used to compensate each of the ADCs with 
the result that improved performance is obtained for each ADC over 
a signifigant portion of the Nyquist band. These results show that 
integrated circuits replicate inherent dynamic error mechanisms and 
provide repeatable performance from batch to batch. An important 
corollary is that the cost of obtaining one error table can be 
spread across the application of many ADCs. 

A paper which outlines the current calibration procedure is 
given in Appendix 1. The paper, entitled, Characterization of ADCs 
Using a Non-iterative Procedure, was submitted in Oct 93 and 
presented to the IEEE International Symposium on Circuits and 
Systems at London in May, 1994. The paper documents the equations 
and procedures used in the calibration problem and presents initial 
results obtained for the compensation of more than one ADC from a 
single error function. A second paper, which supplies more details 
about the calibration data and the use of a single two-tone 
calibration signal vs. several single-tone signals, is presented in 
Appendix 2. The paper, entitled, Two-tone Characterization of 
Analog-to-Digital Converters, was submitted in Mar 94 to the IEEE 
Midwest Symposium on Circuits & Systems and subsequently withdrawn 
when it was determined that no authors could attend to present the 
paper in August 94 at Lafayette, Louisiana. In Oct 94, The paper 
was re-submitted for presentation at the 1995 IEEE Symposium on 
Circuits & Systems to be held in Seattle next May. This paper 
helps to illustrate the use of the procedures outlined in paper 
No.l and it shows that a single two-tone calibration signal yields 
an error function that works nearly as well as a table obtained 
from an extensive set of single-tone test signals. The payoff is 
that the calibration process can be performed with significantly 
less raw data and computation time and space, thus further 
enhancing the value of the compensation process. 

Additional results, presented at the April review, included 
examples showing how our ADC calibration process can be used to 
obtain specific error effects due to how an ADC works. The 
procedure involves the selection of specific basis functions to 
represent error based upon mathematical models for different 
phenomena. One example showed how a table could be obtained to 
measure hysteresis effects only. Pulse basis functions were used 
with one set for positive slope signals and another set for 
negative slope signals. Sine wave calibation signals were found to 
be adequate to measure a hysteresis effect for a real ADC (The 
TKAD2 0). These results represented unique procedures that have 
recently emerged as a consequence of our beginning to formalize the 
understanding of the ADC in terms of architectures and error 
mechanisms. A second example considered amplitude dependent errors 
that arise from sample-time errors due to a simple Track-and-Hold 
model for the front end of an ADC. The model yielded a basis 
consisting of a linear function of state times the slope. When 
effects of nonlinear capacitance, encountered on the flash compara- 
tors, was considered, it was found that the error basis includes 
the model for the Track-and-Hold within a polynomial in the state 
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variable times the slope of the sampled signal. Thus two effects 
were found to be inseparable but their combination could be 
measured vs state by simply selecting appropriate basis functions 
and building an error table. Measured data on the subject TKAD2 0 
showed that the hypotheses yielded consistent data. The resulting 
data showing Estimated Sample-Time error vs State were obtained 
from the calibration process without having to build any special 
timing circuitry or develop any new test procedures. The measured 
data also showed that the effects of sample-time error affect the 
upper end of the Nyquist band (for a good ADC) whereas the 
hysteresis affects the static, or low end of the Nyquist band as 
was expected. 

The procedures developed to isolate specific dynamic errors 
through the use of basis function models are documented in a third 
paper included here in Appendix 3. This paper, entitled, ADC 
Dynamic Error Modeling, was submitted in Oct 94 to the 1995 IEEE 
International Symposium on Circuits & Systems. The paper documents 
the above results in more detail than was possible to present at 
the April meeting. The paper also provides further examples of 
using the procedures outlined in the first paper. 

The above comments cover the contents of what was presented at 
the April review meeting. The three papers enclosed in the 
Appendix provide additional documentation for the procedures that 
are being organized to be able to analyze ADC components for 
specific errors based upon architectural considerations. So far 
the results are very encouraging and we are excited about the 
detail that can be extracted about internal parts by using only 
external measurements. 

3.   Review of TRW 4-bit ADC Prototype Performance 
Sample data were obtained from Lincoln Laboratory so that 

we could apply some of our tests to the data. The prototype is a 
trial run for the process, but it is our understanding that_other 
designs are planned for subsequent prototypes as scheduled in the 
program. 

Enclosed are four graphs to indicate some performance measures 
for the prototype. The device was sampled at 1 GSPS and the graphs 
are based upon 16K samples per test frequency. The first two 
graphs are time Modulo plots based upon a test frequency of 399.23 
MHz. Fig.2 shows the error obtained after excising the 2 0 largest 
harmonic components from the FFT spectrum of the sample set and 
then taking the inverse transform of the result. The error is free 
of harmonic distortion and should represent only random components 
due to quantization and sample time jitter. The error is compared 
to the sample values divided by 16, the binary to decimal range for 
a 4-bit converter, and a curve obtained from the second through 
sixth harmonic distortion terms as determined from the FFT of the 
sample set. The error is concentrated between ±1 LSB as it should 
be for an ideal quantizer with uniform dither set to cover a 1_LSB 
range. There are a few outlying error points due to statistical 
probability for a process which is not strictly uniform. The stair 
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step curve represents scaled sample values and it shows when the 
states are increasing and decreasing. The harmonic error con- 
structed from the first five harmonics shows that the harmonic 
error is much less than 1 LSB and that the distortion is different 
for increasing vs decreasing state values; i.e., the device has 
some hysteresis. 
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Fig.2 Error and sample values Modulo signal period 

Fig. 3 presents the same data in a slightly different form. 
The distortion free error is plotted versus the state of the ADC as 
estimated by using the fundamental component of the test data. 
This plot shows the classic error plot for a quantizer except that 
the range of the error is increased by the random dither used in 
the test. It also shows that that there is a concentration of 
samples in the the high and low states which is characteristic of 
a sinusoidal signal. When the distortion obtained from the 2nd 
through 6th harmonics is plotted against the fundamental component 
a Lissajous pattern is obtained which shows the hysteresis that is 
present in the device at this test frequency. If there were no 
hysteresis present, the curve would present a closed contour rather 
than an open contour for this test. 

Sufficient data were taken to build an error function for this 
4-bit converter and a compensated vs uncompensated SFDR was 
obtained. The result is shown in Fig.4 where it is seen that the 
device is capabable of being compensated and that it is performing 
close to an 8-bit dynamic range, i.e., 50 dB. It is expected that 
more range could be obtained by using smaller calibration signals, 
or by lowering the dither, so as to not drive the device into 
saturation and cutoff, i.e., avoid the states 0 and 15. 
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Fig.4 SFDR for TRW 4-bit prototype 

The distortion free error consists primarily of random 
processes, however, if the device has amplitude dependent jitter 
such as may depend upon the slew rate of the test signal, then 
there will be random errors that correlate with each other at the 
second harmonic of the test signal. An experiment was developed to 
test this phenomena and an example result is shown in Fig. 5 for 
this prototype device. The data shown in Fig. 5 are derived from 4K 
sample sets at a test frequency of 405.517 MHz and a sample 
frequency of 1 GSPS.  The data show that the sample time jitter 
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component is about 2 5 dB below the random dither and quantization 
error components (DC component). This result is consistent with 
trying to use the design to obtain another 4-bits of range. The 
graph shown in Fig. 5 was obtained from the FFT of the square of the 
distortion free sample set plotted as actual error in Fig.2. 

1500        2000        2500 
FFT Cell Number.n 

Fig.5 FFT magnitude spectrum for the error squared 

The tests for obtaining statistical measures for the ADC 
random error components are just being developed as we organize 
tests to understand ADC architechural error mechanisms. A paper 
that gives more details about the process has been written and 
submitted to the 1995 IEEE International Symposium on Circuits & 
Systems and a copy of it is included in Appendix 4. The paper is 
entitled, Measurement  of Random  Sample  Time Jitter for ADCs. 

From a preliminary view, the data are consistent for the 4-bit 
design to be extended to attempt to obtain an 8-bit device. It 
would be useful however to see how the performance holds up as the 
sample frequency is increased. That is hopefully exactly what we 
will be able to do as our data acquisition capability gets upgraded 
to a higher level. 

Page -8 



4.   Applications 
Part of our program objective is to consider 

applications of high performance ADCs. To this end nothing 
definite has been established but we are in dialogue with companies 
like Tektronix, Sanders/Lockheed, and MITRE. In connection with 
MITRE, steps were taken last July to establish a cooperative effort 
that will enable a graduate student to look at the issues between 
normal uniform dither and clutter-like background noises that are 
encountered in radar applications. To date our work has not 
considered this difference but there is some work that has been 
done at MITRE that illustrates a difference between the two 
approaches. We would like to understand this difference and 
determine whether or not specific types of dither signals offer 
advantages for the determination of errors. Conceptually it does 
not seem that error should depend upon application but it can 
depend upon the device as we already suspect in regard to the 
Delta-Sigma architecture where multi-tone signals are used to get 
intermodulation components to fall within the passband of the 
converter. It is expected that this cooperative program will be 
initiated sometime in early 1995. 

5.   Conclusion 

This report has summarized accomplishments achieved over the 
period of 1 Nov 93 through 31 Oct 94. Two students have been 
indoctrinated to the program and its goals. They have made good 
progress toward the understanding and measurement of ADC architec- 
tural errors through the selection of error specific basis 
functions. These techniques have been applied to the development 
of new tests and evaluation procedures. Results are being 
documented with published papers to accomplish a technology 
transfer to the ADC design community. 

There are two issues at which we are directing our current 
effort. One is to look at and understand specifics about the 
architectures that have been proposed by different vendors and the 
second is to try and determine what phenomena is dominant for 
improving the midrange of the Nyquist band performance for the 
flash type converters. So far, isolated phenomena improve either 
the low (static) or high ends of the Nyquist band. The flash 
converter is a building block for other types and we need to 
continue the understanding of architectural error sources, 
particularly for the folding and interpolating types of circuits. 
The Delta-Sigma, or algorithmic approach has not received much of 
our attention in past compensation work so we are directing effort 
on this architecture to try and determine what dynamic compensation 
procedures will best isolate its error sources. This architecture 
presents a challenge since many of the harmonics of single tone 
sources are filtered out by the decimation filters (harmonic 
aliasing is affected) however, it is expected that intermodulation 
testing using multiple-tone sources shold isolate implicit harmonic 
distortion mechanisms. 
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Appendix 1 

A copy of Paper No.l, Characterization of ADCs Using a Non- 
Iterative Procedure, by DM Hummels, et al, was presented at the 
IEEE International Symposium at London, England in May 1994. 

The paper documents the equations and procedures used in the 
ADC calibration problem. 
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Characterization of ADCs Using a 
Non-Iterative Procedure 

D.M. Hummels, F.H. Irons, R. Cook, I. Papantonopoulos 
University of Maine, Orono, Maine 

hummelsQp6irot.eece.maine.edu, (207) 581-2245 

ABSTRACT 

This paper describes procedures to obtain optimum 
error models for ADCs using a non-iterative tech- 
nique. The goal of "phase-plane" compensation for 
ADCs is to determine the error which is introduced 
by a converter as a function of the ADC state and the 
(estimated) slope of the input signal. Past calibration 
schemes have been frustrated by uncertainties about 
the input calibration signal. In this paper, the error 
characteristic is expressed as a linear combination of a 
set of basis functions, which is then optimized to min- 
imize the harmonic distortion in the output sample 
sequence. Degradation in performance due to inac- 
curate estimates of the input signal is avoided. The 
theories developed in this paper are applied to an 
8-bit ADC sampling at 204.8 MSPS. Experimental 
results show that dynamic range performance can be 
improved by as much as 12 dB over the Nyquist band. 
A further interesting result is that an error function 
measured for one ADC is found to work equally well 
for another ADC taken from the same production 
run. The errors determined are thus found to be 
unique to the ADC design and production, and not 
to the test and representation methods. It is believed 
that this is the first time that results of this nature 
have been reported in the literature. 

1    INTRODUCTION 

Dynamic error correction methods for analog-to- 
digital converters (ADC's) have been under develop- 
ment for several years. The motivation for dynamic 
error correction is to eliminate frequency dependent 
distortion introduced by analog to digital convert- 
ers. ADC manufacturers typically limit distortion 
power levels introduced by an ADC to values on the 
order of the quantization error power. This distor- 
tion typically limits the spurious free dynamic range 
(SFDR) of an ADC to approximately 6n dB, where 
n is the number of bits in the converter. That is, the 

Input 
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 T-+- ADC 

I 
I  Derivative 

Estimator ^ 

Error 
Correct 
Table 

Correctioi ■*- ^*  Compensated- 
Samples 

Figure 1: ADC Compensation Architecture 

distortion introduced by quantizing a near full scale 
sine wave will cause spurious harmonics at power lev- 
els which are approximately 6n dB below the input 
power level. Many applications, however, require dy- 
namic range far in excess of this value. One such 
application is the use of wide bandwidth ADC's on 
the input of digitally implemented communication or 
radar receivers. Here, nonlinearities in the signal path 
are often dominated by the ADC, limiting the achiev- 
able dynamic range of the receiver. 

Researchers have known for some time that the 
distortion introduced by an ADC is a dynamic phe- 
nomenon, and that simply applying a fixed correc- 
tion to each ADC output improves the SFDR of 
the converter only near the calibration frequency [1]. 
Dynamic compensation procedures have been intro- 
duced to cope with this frequency dependent distor- 
tion. These techniques typically base the error cor- 
rection on the current output of the converter and 
some estimate of the slope of the input signal at the 
time that the sample was taken. Figure 1 illustrates 
the approach, in which values of an error function are 
stored in a memory which is accessed by the state and 
slope of the input signal. A number of techniques 
have been used to derive the slope estimate. Slope 
estimates may be obtained either by processing the 
ADC output sample sequence or by adding additional 
analog circuitry/converters to obtain the information 
directly from the input signal. 



An ADC calibration procedure is required to deter- 
mine the error correction table entries. Initial com- 
pensation schemes approximated the error introduced 
by the converter by estimating the amplitude and 
phase of the input calibration signal using a mean- 
square fit to the output sample sequence. Simulation 
studies [3, 4] have shown that inaccuracies in these 
estimates cause a significant degradation in perfor- 
mance as the ADC input frequency deviates from the 
calibration frequency. Iterative procedures have been 
introduced which vary the assumed amplitude and 
phase until an acceptable table is formed [3, 4]. These 
techniques improve the performance of the compen- 
sated converter, but are computationally expensive, 
and may never converge to a solution. 

This paper describes a direct, non-iterative, pro- 
cedure to determine the error function for an ADC. 
Section 2 introduces the notation and gives the theo- 
retical formulation of the calibration procedure. The 
procedure is not specific to the form of the deriva- 
tive estimator, and may be extended to more general 
compensation architectures. Section 3 presents the 
measured performance of the algorithm for an 8-bit 
204.8 MSPS converter. 

2    COMPENSATION FORMULATION 

The compensation problem will be formulated under 
the assumption that two variables are used to index 
the error correction table. As in past dynamic com- 
pensation efforts, the first index into the error table 
will be assumed to be the ADC state, and the sec- 
ond is generally a quantity which is related to the 
derivative of the input signal at the sampling instant. 
Although the extension to error tables with more in- 
puts is straightforward, previous efforts in this di- 
rection have not improved performance beyond that 
obtained with the two-input tables [5]. 

Let Xi represent the ith sample taken by the ADC, 
and t/j the quantity which is to be used to index the 
second axis of the table. We denote the compensated 
signal by Zi, where z< is given by 

Zi = Xi -e(xi,yi) (1) 

The goal of compensation is to linearize the converter, 
so that the sample sequence Zi is an accurate rendi- 
tion of the ADC input. An ADC calibration proce- 
dure is required to determine the unknown function 
e(z,y). 

To calibrate the converter, the ADC is excited us- 
ing a pure sinusoidal calibration signal with known 
frequency /Q.  Because of unknown gains and delays 

before the input stages of the converter, the exact 
amplitude and phase of the input calibration signal 
is not generally known. Past calibration procedures 
have emphasized estimation of the ADC input from 
the output sample sequence. As pointed out in [2], 
estimation procedures based on finding the minimum 
mean-square error fit to the output sequence are gen- 
erally inadequate, resulting in a degradation of per- 
formance as the ADC input frequency moves away 
from the calibration frequency. Iterative procedures 
were introduced for which the assumed amplitude and 
phase of the calibration signal is varied until an ac- 
ceptable table is obtained. Here, we formulate the 
calibration problem such that estimation of the input 
signal is not required, resulting in a more accurate er- 
ror correction table in a fraction of the time required 
for the iterative procedure. 

Let i = [xi x-i ... xtr]T represent a vector of ADC 
output samples collected by sampling the sinusoidal 
calibration signal with sampling frequency /,. Fur- 
ther, let y = [j/i t/2 • • • yj\r]T be the corresponding 
vector of values used to index the second axis of the 
table. The vector of compensated values is 

where 

e(z, y) = 

- e(£, y) 

e(zi,2/i) 
e(s2,ya) 

(2) 

(3) 

e{xN,yN) 

The goal is to select e(x, y) to minimize the distor- 
tion in z. For the calibration signal, the distortion 
in z may be measured by evaluating the DFT of the 
sequence {zi, zj, ..., zjy} at the harmonics of the 
input calibration frequency. Let T denote the trans- 
formation matrix which gives the second through the 
Mth harmonic of the input signal: 

T = 

w° w2 w*    . .. W7N 

w° w3 w6    . ..     W3N 

w° WA wa .. w*» 

where 

ypO     tyM     yy2M 

Iff — gj^fo/f. 

\yMN 

(4) 

(5) 

Then Tz is the vector which contains the 2nd through 
the Afth harmonics measured in this manner. We 
wish to determine the function e(x,y) which mini- 
mizes ||Tz|| = \\Tx — Te(z,y)\\ by solving the system 
of equations 

f£=fe(x,y) (6) 



in the least-squares sense. 

To solve for the function e(z, y), we first write the 
function as a linear combination of L (known) basis 
functions bi(x,y): 

where K is the number of calibration signals, and 

T , B , and &*' are the required matrices and vec- 
tors for each of the calibration signals, and [ ]+ de- 
notes the pseudo-inverse of the indicated matrix. 

«(»•y) = £*iMa»,v) (7) 
»=i 

The optimization problem is to select the best values 
for ari, crj, ..., c*£. Let bi(x, y) denote the vector of 
values obtained from the ith basis function evaluated 
at each of the calibration (zt-,j/i) pairs: 

W*, y) = 

bi(x1>yi) 
&t(x2,ya) 

. k(xN,yN) 

(8) 

the vector of error table values is given by 

L 
?(*.y) = J£ ««£(*, #         (9) 

i—1 

= Ba (10) 

where B is a N x L matrix with (i, j) element given 
by bj(xi, y<), and a = [ati a2 ... ai,]T. Using a basis 
function representation for e(x, y) presents a classical 
linear least-squares problem. Substituting (10) into 
(6) gives 

TBS = f x (11) 

The least-squares solution to (11) is obtained by mul- 
tiplying both sides of the equation by the pseudo- 
inverse of TB. In implementation, the entries of the 
(M -l)xl matrix TB are calculated directly using 
FFTs of each of the vectors b\{x, y), rather than cal- 
culating the (large) matrices T and B separately. The 
singular-value decomposition is then used to evaluate 
the pseudo-inverse of the matrix. Values of Tx are 
obtained directly from the FFT of x. 

Note that although the above discussion is cast in 
terms of a single calibration signal, in practice more 
than one calibration signal is used so that all possible 
(z, y) pairs are excited. In this case, each calibration 
signal gives a system of equations in the form of (11), 
and the solution is given by 

a = 

fll)BW 

fWBW 

TlK)BlK) 

f(1)x<V 

f(2)x<2> 

fWxW 

(12) 

3    EXPERIMENTAL RESULTS 

The above algorithm was implemented using Gaus- 
sian basis functions with centers distributed on a 
10 x 10 grid covering the range of possible (x,y) com- 
binations. Each of the basis functions has the form 

Hx> y) =e-*((^)a+(^r) (13) 

where cIt- and Cyj are the basis function centers and 
depend on i. The parameters ax and ay determine the 
"smoothness" of the basis functions. The parameters 
ers and cry were selected to be equal to the separation 
of the basis functions centers in the x and y directions 
respectively. 

A Tektronix AD-20 eight-bit converter sampling at 
204.8 MSPS was used to test the compensation algo- 
rithm. The converter was calibrated using 16 calibra- 
tion signals (eight frequencies from 2.5 to 80 MHz at 
two amplitudes). It is important that the loci of x — y 
pairs excited by the various calibration signals cross 
each other to avoid ambiguities in the error function 
solution. The output of a 31-tap FIR differentiating 
filter was used to provide the y-axis values for the er- 
ror characteristic. For each of the calibration signals, 
N=4096 samples were collected and used to estimate 
the various harmonics required in (12). Equation (12) 
was formulated to minimize the first 20 harmonics of 
each of the signals. Compensation was accomplished 
by accessing values of the error function from an error 
correction table. The table was formed by evaluating 
e(x, y) on a 128 x 128 grid on the x-y plane. 

Figure 2 illustrates the improvement in perfor- 
mance which is achieved by compensation. The figure 
shows the uncompensated and compensated spurious- 
free dynamic range (SFDR) for the converter tested 
at an input level of -1 dB relative to full-scale (-1 
dBFS). The SFDR is measured by driving the con- 
verter with a pure sinusoidal signal, and measuring 
the dB difference between the height of the funda- 
mental and the height of the highest spurious signal 
in the spectrum of the ADC output samples. In the 
figure, the SFDR is plotted for various input test fre- 
quencies across the Nyquist band. The figure shows 
that compensation is providing 10 dB or more im- 
provement over the majority of the Nyquist band. 
The resulting 8-bit converter is providing over 60 dB 
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Figure 2: Spurious-free dynamic range (uncompen- 
sated and compensated) for two converters. Both 
compensated characteristics were obtained using the 
same error table, which was created by calibrating 
ADC-1. 

of dynamic range from DC to 90 MHz. Above 90 
MHz, the compensation performance drops back to 
that of the uncompensated converter, as the FIR fil- 
ter fails to give a valid estimate of the slope of the 
input signal at these frequencies. 

Note that the performance is uniformly good across 
the Nyquist band, not exhibiting the degradation 
which has been typical of other compensation algo- 
rithms. To a large extent, this result is a verifica- 
tion of the simulation results presented in [4], which 
suggested that a possible reason for the performance 
degradation was the inaccurate knowledge of the am- 
plitude and phase of the input calibration signal. By 
not estimating the input signal from the output sam- 
ple sequence, this problem is avoided in our formula- 
tion. 

To test the generalization of the error characteris- 
tic to other converters manufactured in the same lot, 
a second Tektronix AD-20 ADC was compensated 
using the table which was created by calibrating the 
first converter. Figure 2 shows the resulting perfor- 
mance, labeled as 'ADC-2'. The compensated ADC 
gives performance which is nearly identical to that 
obtained by the original ADC which was used to ob- 
tain the error table. This is an important result, sug- 
gesting that the distortion which is introduced by the 
converter is primarily a function of the ADC design 
and production, and is generic from device to device. 
It suggests that manufacturers may be able to obtain 
correction tables which apply to a large number of 

converters by actually calibrating a relatively small 
number of devices. 

4    CONCLUSIONS 

This paper has introduced an approach to calibrating 
analog to digital converters which avoids the estima- 
tion of the amplitude and phase of the input cali- 
bration signal. Because iterative schemes to estimate 
the input are not used, the computational burden re- 
quired by the algorithm has been greatly reduced. 
(For our workstation, the required time for construct- 
ing the table has dropped from over ten hours for 
the techniques reported in [2] to just over three min- 
utes for the algorithm presented here.) The result- 
ing tables actually out-perform tables created using 
previous techniques. Specifically, they do not exhibit 
the degradation in performance as test frequencies are 
moved away from the calibration frequency that are 
typical of techniques which require estimation of the 
input signal. Finally, the results show that a single 
error correction is not specific to the ADC used for 
calibration. Two ADCs from the same production lot 
were shown to be compensatable using the same error 
table, suggesting that manufacturers may be able to 
obtain correction tables which apply to a large num- 
ber of converters by actually calibrating a relatively 
small number of devices. 
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Appendix 2 

A copy of Paper No.2, Two-Tone Characterization of Analog-to- 
Digital Converters, by IN Papantonopoulos, et al, was submitted in 
Oct 1994 for presentation at the 1995 IEEE International Symposium 
on Circuits & Systems. 

The paper supplies more details about ADC calibration data and 
the use of a single two-tone calibration signal vs. several single- 
tone signals. 
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Abstract— This paper introduces an ADC cali- 
bration procedure requiring only a single two-tone 
calibration signal. The resulting intermodulation 
terms densely excite the phase-plane space of the 
converter, thus allowing for the construction of an 
accurate error table. Results from a real ADC are 
presented for the first time. 

I. INTRODUCTION 

Dynamic error correction methods for analog-to-digital 
converters (ADC's) have been under development for sev- 
eral years [1, 2, 3, 4]. The motivation for dynamic error 
correction is to eliminate frequency dependent distortion 
introduced by analog to digital converters. ADC manu- 
facturers typically limit distortion power levels introduced 
by an ADC to values on the order of the quantization error 
power. This distortion typically limits the spurious free 
dynamic range (SFDR) of an ADC to approximately 6n 
dB, where n is the number of bits in the converter. That is, 
the distortion introduced by quantizing a near full scale 
sine wave will cause spurious harmonics at power levels 
which are approximately 6n dB below the input power 
level. Many applications, however, require dynamic range 
far in excess of this value. One such application is the use 
of wide bandwidth ADC's on the input of digitally im- 
plemented communication or radar receivers. Here, non- 
linearities in the signal path are often dominated by the 
ADC, limiting the achievable dynamic range of the re- 
ceiver. 

Researchers have known for some time that the distor- 
tion introduced by an ADC is a dynamic phenomenon, 
and that simply applying a fixed correction to each ADC 
output improves the SFDR of the converter only near the 
calibration frequency [5]. Dynamic compensation proce- 
dures have been introduced to cope with this frequency 
dependent distortion. These techniques typically base the 
error correction on the current output of the converter and 
some estimate of the slope of the input signal at the time 
that the sample was taken. Figure 1 illustrates the ap- 
proach, in which values of an error function are stored in a 

Input 
Signal 
 1-*- ADC 

L _ - _ -*. Derivative 
Estimator 

W. 

Error 
Correctio! 

Table 
T»| Compensated 

Samples 

Figure 1: ADC Compensation Architecture 

memory which is accessed by the state and slope of the in- 
put signal. A number of techniques have been used to de- 
rive the slope estimate. Slope estimates may be obtained 
either by processing the ADC output sample sequence or 
by adding additional analog circuitry/converters to obtain 
the information directly from the input signal. 

An ADC calibration procedure is required to determine 
the error correction table entries. In the past, calibration 
procedures have involved driving the converter using pure 
sinusoidal signals at various amplitudes and phases. Si- 
nusoidal signals have been selected since they can be gen- 
erated at high frequencies and filtered to obtain desired 
fidelity. In order to calibrate a converter, a variety of cal- 
ibration signal amplitudes and frequencies are required in 
order to excite the device densely in the state-slope plane 
(the phase-plane). Implementation of the procedure would 
necessitate a complex function generator capable of gen- 
erating the required frequencies and amplitudes, as well 
as a switchable set of filters. In this paper, we show that 
a single calibration signal may be used to cover the phase- 
plane. The signal is composed of two sinusoids with fre- 
quencies near the Nyquist frequency. Using this calibra- 
tion signal requires only two (fixed frequency) oscillators, 
and a single filter. 

In section II we show that the two-tone calibration 
procedure effectively excites the phase-plane. Section III 
presents the algorithm implemented for converter calibra- 
tion with a two-tone signal. Experimental results for the 
procedures are presented in Section IV. 
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Figure 2: Phase plane trajectories for 16 single-tone cali- 
bration signals (2 amplitudes, 8 frequencies). 

Figure 3: Phase plane trajectory for two-tone calibration 
signal. 

II. THE CALIBRATION SIGNAL 

Figure 2 shows a scatter plot of the state and derivative 
trajectories of the single-tone calibration data, where 8 
frequencies and 2 amplitudes per frequency were used. 
The data was collected from a Tektronix AD20 converter 
sampling at 204.8 MSPS. In comparison, Figure 3 shows 
the corresponding two-tone phase-plane excitation, where 
only one calibration signal was used. This plot shows that 
the converter's phase-plane can be very densely and uni- 
formly excited by a two-tone signal. In order to excite 
as many state-slope pairs as possible, the two-tone signal 
frequencies should be chosen near the Nyquist frequency. 
The amplitudes of the two signals are set equal to each 
other, slightly below 50% of full scale. 

III. CALIBRATION ALGORITHM 

The calibration algorithm follows closely the procedure 
presented in [6]. Let Xi represent the ith sample taken 
by the ADC, and yi the slope estimate. We denote the 
compensated signal by Zj, where Zi is given by 

z< Xi e(a5i.3/i) (1) 

The goal of compensation is to linearize the converter, so 
that the sample sequence z» is an accurate rendition of the 
ADC input. An ADC calibration procedure is required to 
determine the unknown function e(x, y). 

Assume that the converter is excited using a two-tone 
signal with frequencies f\ and /2. The converter distorts 
the signal, resulting in energy at a large number of inter- 
modulation frequencies.  Let VQ v\ ... VM-X be a subset 

of significant intermodulation frequencies of the form 

Vi = *i/i + k2f2 (2) 

Let x = [zi Z] ... XJV]T represent a vector of ADC 
output samples collected by sampling the sinusoidal cal- 
ibration signal with sampling frequency /,. Further, let 
V — [vi 2/2 • • • VN]T be the corresponding vector of values 
used to index the second axis of the table. The vector of 
compensated values is 

z = z-e(z,y) 

where 

e(£, y) = 

e(si,!/i) 
e(z2, ya) 

(3) 

(4) 

e(xN,VN) 

The goal is to select e(z,y) to minimize the distortion 
in z. For the calibration signal, the distortion in z 
may be measured by evaluating the DFT of the sequence 
{zi, Z2, ..., zjv} at the harmonics of the input calibra- 

tion frequency. Let T denote the transformation matrix 
which gives the components of the signal at each of the 
intermodulation frequencies: 

T = 

W§ 
w° 
w2° 

n.i 

W£ W> 

wl      w* 
wj 

Wh-i 

wl 

w£-i 

wf-1 

Wi N-l 

W\ N-l 
M-l 

(5) 



where 
Wi = e -JlvvilS. 

(6) 

Then Tz is the vector which contains the 2nd through 
the Mth harmonics measured in this manner. We wish to 
determine the function e(x, y) which minimizes \\Tz\\ = 
\\Tx — Te{x, y)\\ by solving the system of equations 

Tx = Te(x,y) (7) 

in the least-squares sense. 
To solve for the function e(as, y), we first write the func- 

tion as a linear combination of X (known) basis functions 
bi(x,y): 

L 

e(*,y) = '52ccibi(x>y) (8) 
t=l 

The optimization problem is to select the best values for 
a%, orai •••> <*£. Let 6»(i, y) denote the vector of values 
obtained from the ith basis function evaluated at each of 
the calibration (zi,y«) pairs: 

bi(xi,yi) 

Hx,y) - 
bi{x2,y2) 

bi(xN,yN) 

(9) 

Then the vector of error table values is given by 

L 

i—1 
(10) 

= Ba (11) 

where B is a N x L matrix with (i, j) element given by 
bjfet Vi)> an(i o = [ai a2 • ■ • <*L]

T• Using a basis function 
representation for e(x,y) presents a classical linear least- 
squares problem. Substituting (11) into (7) gives 

TBS = Tx (12) 

The least-squares solution to (12) is obtained by multi- 
plying both sides of the equation by the pseudo-inverse of 
TB. In implementation, the entries of the (Af -1) x L ma- 
trix TB are calculated directly using FFTs of each of the 
vectors &»(£, y)> rather than calculating the (large) matri- 
ces T and B separately. The singular-value decomposition 
is then used to evaluate the pseudo-inverse of the matrix. 
Values of Tx are obtained directly from the FFT of x. 

IV. RESULTS 

A Tektronix AD20 converter sampling at 204.8 MSPS was 
compensated by means of an error table created from 
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Figure 4: Spurious free dynamic range performance of 
uncompensated (dashed), single-tone (dash-dot), and two- 
tone (solid) calibrated converter. 

two-tone calibration. Figure 4 illustrates the compara- 
tive Spurious-Free Dynamic Range (SFDR) for the un- 
compensated, the single-tone calibrated and the two-tone 
calibrated converter. The two-tone procedure compen- 
sated the converter throughout the Nyquist band, yield- 
ing a maximum dynamic range improvement of 11 dB. 
Although the single-tone calibration is better in the lower 
end of the Nyquist band, the two-tone calibration com- 
pensates at least as well (if not better) around the high 
end of the band. 

V. CONCLUSIONS 

This paper has introduced a new way to calibrate analog 
to digital converters which only requires a single two-tone 
calibration signal. The composite signal consists of two 
sinusoids, thus eliminating the need for multiple single- 
tone calibration signals and corresponding niters. The 
intermodulation terms uniformly excited the converter's 
phase-plane, yielding a much denser set of calibrating 
state-slope pairs. The converter's dynamic range was im- 
proved throughout the Nyquist band, yielding an SFDR 
performance comparable to that of single-tone calibration. 
The two-tone procedure yields a much more efficient cali- 
bration technique. It is also believed that this is the first 
time that such a technique has been reported and success- 
fully tested on a real converter. 
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Appendix 3 

A copy of Paper No. 3, ADC Dynamic Error Modeling, by FH Irons, 
et al, was submitted in Oct 1994 for presentation at the 1995 IEEE 
International Symposium on Circuits & Systems. 

The paper illustrates methods developed to isolate specific 
dynamic errors through the use of basis function models and the 
calibration process. 
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Abstract— Following published procedures for 
characterizing ADCs using phase-plane error func- 
tions, this paper shows how a given calibration 
data set may used to extract estimates of specific 
error performance features pertaining to ADC 
architectural considerations. The procedure re- 
quires the selection of basis functions based upon 
properties of a desired feature. The techniques are 
applied to the 8-bit TKAD20 operating at 204.8 
MSPS to illustrate the concepts discussed in the 
paper. Results show how it is possible to esti- 
mate hysteresis and average sample time errors 
versus the state of the ADC. A simple consid- 
eration shows why it is not possible to separate 
sample time errors from the effects of nonlinear 
capacitance. 

I. INTRODUCTION 

It has been reported [1] that the dynamic error represen- 
tation for an ADC could be obtained in a direct fashion 
from a set of sine wave calibration data. The dynamic 
error is assumed to be a function of two variables, x and 
y, where x represents the output state and y represents 
an estimate of the corresponding slope of the state of the 
ADC output. 

c(*>y) = Ylaibi(x>y) (1) 
i=l 

The error function given by (1) is represented over the 
space defined by x and y for the set of basis functions, 
bi. Since y is a measure of i, the space is often referred 
to as the phase-plane for the ADC. Once the coefficients, 
an, are determined for each basis function, it is possible 
to compensate the ADC by removing the error estimate 
from the data set as shown in (2). 

Zi = n- e(xi,yi) (2) 

'This work ha» been supported in part by the ARPA HBT/ADC 
program under a contract administered by the Office of Naval Re- 
search Grant N000149311007 

In (2), 2j represents the compensated signal where Xi is 
the itk sample of the ADC and y» is the slope. 

Previous publications have not addressed the issue of 
what type of basis functions should be used for this prob- 
lem. Following neural network procedures for the devel- 
opment of training functions, two-dimensional Gaussian 
functions have been used in the past. These functions 
have consistently provided well-behaved solutions to the 
least square procedures used to estimate the ADC error 
function. The arbitrary use of these functions does not an- 
swer the question of whether there are specific functions 
that will more effectively model ADC error mechanisms. 
This paper presents some results that have been obtained 
in a preliminary look at choosing functions based upon dif- 
ferent architectural features used in the design of ADCs. 

Section II presents results obtained using specific basis 
functions to represent designated error features. In each 
case the effect of using a specific basis set is evaluated 
by using the error function thus obtained to compensate 
the ADC. The compensation performance is obtained by 
measuring the ADC's compensated spurious free dynamic 
range (SFDR) over the Nyquist band. It should be noted 
that each of the specific error functions are estimated by 
using the same calibration data set, thus not requiring any 
variations or special changes in the calibration circuitry. 
The results therefore show that a set of calibration data 
contains the information necessary to estimate particular 
error features whenever pertinent basis functions are used. 

II. ADC ERROR FEATURES 

A. Hysteresis 

A test used by ADC manufacturers is the measurement of 
differential nonlinearities. This test is performed by using 
a computer driven DAC to generate a precision ramp sig- 
nal. The ramp takes a specified number of steps through 
each state of the ADC. The ADC is sampled several times 
at each step with the result that statistics can be assem- 
bled for each quantization interval and threshold [2, 3]. 
This test is virtually a static test except that the results 
differ for an upward versus a downward ramp. The mea- 
surement thus exhibits a hysteresis phenomenon for the 
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Figure 1: Flash converter dynamic hysteresis estimate Figure 2: Hysteresis error function in x — x space 

quantization threshold parameters. 
It is possible to observe the same hysteresis by sampling 

a pure sine wave signal and constructing an error estimate 
using the dominant harmonic distortion terms found in the 
FFT of the sample set. When the error estimate is plot- 
ted versus the state of the ADC it is observed that the 
error forms an open contour thus illustrating hysteresis 
as a function of test frequency and ADC state. Hystere- 
sis is a dynamic phenomenon and is measurable by using 
sinewave data as long as the selected basis functions allow 
for its representation. One way to allow the presence of 
hysteresis is shown in (3) using the unit step function. 

70 

t = u(y)f(x) + u(-y)g(x) (3) 

The error in (3) is given by /(x) when the ADC state is 
increasing and by g(x) when it is decreasing. Thus (3) 
allows two distinct error functions based upon the slope 
of the ADC at any of its output states, Xi. 

The hypothesis is tested by using 32 unit pulse functions 
for each of /(as) and g(x). The functions were uniformly 
centered over the 8-bit range of the TKAD20, each with 
a width of eight states. The resulting 64 coefficients, ait 

were estimated using least square methods [1] on the low- 
est frequency data of the calibration set; e.g., 2.5 MHz at 
two amplitudes and with error based upon the first 20 har- 
monics of each signal. The resulting dynamic hysteresis 
is shown in Fig.l. The solid curve is error (in LSBs) ver- 
sus the ADC state for increasing state whereas the dashed 
curve is for decreasing states. A hysteresis phenomenon is 
definitely evident for this ADC. The corresponding error 
is shown as a two dimensional function in Fig.2. Clearly 
theres is no x dependence other than the "cut" at x = 0 
where the function switches from g(x) to /(i). The error 
table of Fig.2 is then used to compensate ADC samples. 
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Figure 3: SFDR improvement using hysteresis errors 

The performance improvement is illustrated by means of 
the measured SFDRs shown in Fig. 3 where compensated 
and uncompensated SFDRs are compared. The graph 
shows that the hysteresis estimate improves low frequency 
performance by as much as 6 dB out to about 20% of the 
Nyquist band. This measure clearly shows the extent to 
which hysteresis is present and should be accounted for in 
order to improve the dynamic performance of this ADC. 

B.  Sample-time Error 

Another important feature that contributes to ADC sam- 
ple error is referred to as sample-time jitter. Almost all 
high-speed ADCs use some form of Sample/Hold (S/H) 
circuitry which can contribute to amplitude dependent 
sample-time errors. Various techniques are used to try 
and measure this phenomenon and most involve precision 
filters, phase-locking techniques, and special circuitry to 
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Figure 4: Sample-time error generated by S/H switching 

isolate this second order effect. An analysis of the response 
diagram shown in Fig.4 leads to the following result. 

As shown in Fig.4, the state of the ADC is compared 
to the S/H control signal used to control the switch. 
Most high-speed sample-holds employ current switching 
through diode bridge circuits and, as was originally shown 
by Gray and Kitsopoulas [4], the switch does not change 
state until some point after the command is initiated. The 
point is determined by the intersection of the desired sig- 
nal with the switch transition. 

Let a:* = ADC state at the sample time kr 
yk= corresponding slope 
A — B(t — fcr)= Switch transition waveform, then with 
6 = sample-time error 

we get (4) at the intersection of the two waveforms. 

a* +Vk6 = A - 

Rearrangement yields (5). 

A- xk 

BS 

6 = 
B + yk 

(4) 

(5) 

The error is given by 6yk so that (6) is obtained by invok- 
ing the fact that B ;» yjfc. 

t = Vk 
A - n 

B (6) 

(6) shows that sample-time errors yield a polynomial (al- 
beit a straight line) in the ADC state variable times the 
corresponding slope. No higher order terms are involved 
for a high speed switch. 

Before testing these error functions it is important to 
note that a similar result is obtained from any non-linear 
capacitance that is present in the signal path. Gener- 
ally, flash comparators yield unavoidable non-linear capac- 
itance at their input. When several (approaching 2Niit') 

C=IckvJ 

Figure 5: The buffer amplifier drives a nonlinear capacitor 

of these are paralleled, it is difficult to avoid non-linear ca- 
pacitance on the signal path. As shown in Fig.5, the static 
capacitance is modeled with a polynomial in the voltage 
variable, Vc across the capacitor. The voltage variable, v, 
at the buffer output, is the desired ADC state variable. 
Thus applying KCL at the capacitor yields (7). 

G{v-vc)    =    G( = d(Cvc)/dt 

£    =    Rtf^ik + VCkv'cjvc (7) 

The result given in (7) is based on the assumption that 
£ is small hence rc is nearly equal to v and so we obtain 
the error form given in (8) for a nonlinear capacitor. 

Z = yp(x) (8) 

Nonlinear capacitance in the signal path yields an error 
basis function which includes the form just derived for 
amplitude dependent sample-time error. 

A measured error function, using the full calibration 
data set is shown in Fig.6. A fifth order polynomial was 
used for p(x) and no other basis functions were used to 
obtain the error table. Since the sample-time error is given 
by the slope times state, as used to derive (6), it is possible 
to use the error function to obtain an estimate of sample- 
time error as a function of ADC state. This result is shown 
in Fig. 7. [thb] 

In the mid-range of ADC values, which corresponds to 
small incremental signals, the sample-time error appears 
to have a linear slope thus indicating that the S/H error 
is dominant for small signals. As the signal is increased, 
the curve exhibits nonlinear behavior thus suggesting that 
the nonlinear capacitor dominates sample-time error for 
large signals. Note that errors ranging from zero to a few 
picoseconds are obtained from this result without having 
to resort to any special circuitry or test procedures. 

Finally, the estimated sample-time error function is 
used to compensate the ADC to observe how this error 
representation affects performance.   The result is shown 
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Figure 7: Estimated sample-time error 

in Fig.8 where compensated and uncompensated SFDRs 
are compared. The graph shows that the sample-time 
error provides a significant contribution to dynamic per- 
formance for frequencies at the upper end of the Nyquist 
band. Sample-time error has negligible effect on low fre- 
quency performance of the ADC as expected since the 
parameter, y, goes to zero for low frequency signals. 

III. CONCLUSIONS 

This paper has introduced the concept that particular ba- 
sis functions can be selected to measure specific ADC ar- 
chitectural error phenomena. An 8-bit wide-band flash 
converter was used to illustrate the estimation of both 
hysteresis and sample-time errors from a single set of cal- 
ibration data merely by changing the basis functions used 
to build dynamic error functions. An analysis showed that 
non-linear capacitance yields an error function that in- 

cludes the error function required for the estimation of 
sample-time errors due to S/H switching circuits. Hys- 
teresis error modeling improved the ADC low frequency 
performance while sample-time and non-linear capacitor 
error modeling improved the high frequency performance. 

Error phenomena considered in this paper did not con- 
tribute significantly to midband performance of the ADC. 
The use of two- dimensional Gaussian, or sine, functions 
uniformly distributed over z, y space has historically pro- 
vided significant improvement for the midband region of 
the ADC [1]. 
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Appendix 4 

A copy of Paper No. 4, Measurement of Random Sample Time Jitter 
for ADCs, by DM Hummels, et al, was submitted in Oct 1994 for 
presentation at the 1995 IEEE International Symposium on Circuits 
& Systems. 

This paper presents initial results of methods developed to 
obtain statistical measures for ADC random error components. 
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Abstract— This paper addresses the measure- 
ment of random sample-time jitter in the char- 
acterization of ADC's. A straightforward test is 
developed which allows for measurement of both 
additive noise power and RMS sample-time jitter. 
Simulations are used to assess the accuracy of the 
technique. Experimental results are also given for 
a commercially available ADC. 

I. INTRODUCTION 

Analog-to-Digital Converters (ADC's) are often charac- 
terized in terms of the amount of noise which is intro- 
duced into the signal during the sampling process. Most 
ADC manufacturers provide specifications for the number 
of "effective bits" which the converter is providing. This 
specification includes the contribution due to a wide vari- 
ety of noise sources, including thermal and shot noise in 
the input stages of the converter, errors in the quantiza- 
tion thresholds, and noise which is present on the clock 
signal. 

For many applications, it is desirable to know not only 
the amount of noise which the converter is introducing, 
but also the source of the noise. From an ADC designer's 
point of view, knowledge of whether noise which is intro- 
duced through the input signal path, or through insta- 
bility in the clock signal is critical to focusing the design 
effort. Similarly, users of ADC's need techniques to isolate 
noise sources. Converters may exhibit noise levels which 
are higher than the specifications predict either because 
of improperly driving the converter, or because of a loss 
of integrity in the sampling clock. 

In this paper, a technique is presented which allows for 
the separation of additive noise sources from noise which 
is introduced through sample time jitter. The test is per- 
formed by driving the converter using a sinusoidal source, 
and removing all significant distortion that the converter 
introduces. The resulting noise process contains quanti- 
zation noise, thermal noise from the converter input, and 
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noise which is introduced from sample time jitter. In Sec- 
tion II we show that the sample-time jitter noise has a 
time-varying variance, since this noise signal is modulated 
by the derivative of the input signal. A procedure is in- 
troduced which measures the power in the modulated pro- 
cess, and relates this quantity to the RMS deviation in the 
sample time. Simulation results verifying the procedure 
are presented in Section III. Section IV presents measured 
results obtained using a commercially available 250 Msps 
converter. 

It should be stressed that variations in the sampling in- 
stant which are related to the input signal may also result 
in distortion. In this paper we do not attempt to charac- 
terize the distortion which is introduce by misalignment of 
the clock signal. Rather, we are concerned with the mea- 
surement of the random component of the sample time 
deviations which contribute to the noise floor of the con- 
verter. Measurement of sample-time deviations which re- 
sult in distortion introduced by the converter is discussed 
in another paper [1]. 

II. FORMULATION 

Let x(t) denote the input signal to an ADC. The output 
of the converter is a sequence of samples yk, given by 

yk = x(kT, + At) + g(x(t)) \t=kT. + nk (1) 

In (1), T, represents the ideal sampling period for the con- 
verter, g() represents a nonlinear function to model distor- 
tion which is introduced by the converter, and nk denotes 
an additive noise component which is due to dithering, 
quantization noise, and noise sources in the input stage 
of the converter. The A* term of (1) represents the (ran- 
dom) deviation in the sample time. Our goal is to identify 
techniques to estimate the variance of the random com- 
ponents At and nk, denoted a\ and a\ respectively. The 
RMS sample-time jitter is the standard deviation of Ak, 
crA. 

Note that in (1), the distortion function g() may depend 
not only on x(t) but also on the dynamic properties of x{t) 
(its derivatives). The magnitude of j() is generally kept 



small-oil the order of an LSB. Also, manufacturers at- 
tempt to control the sampling instant so that At is small 
relative to the rate of change of the input signal. Using 
this fact, yk may be accurately modeled in terms of the 
true sample value x(kT,) and an additive noise compo- 
nent. 

yk « x(kT.) + Akx(kTt) + g(x(t)) \t=kT. + nt       (2) 

The key to separating the contribution to the noise floor 
due to At from that of nk is to take advantage of the 
fact that At is modulated by the derivative of the input 
signal (errors introduced due to sample-time deviations 
are largest when the input signal is changing quickly). 
For measurement of the noise variance, we may drive the 
converter using a sinusoidal source. 

x(t)    =    Acos(wot + 0) (3) 

yk    =   Acos(u)0kT, + 8) + g(x(t)) \t=kT. 

-Au0Ak sm(u0kT, + 8) + nk (4) 

In this case, the distortion function g() is periodic, so that 
the first line of (4) may be removed from the sample se- 
quence {i/i} by finding the FFT of the sequence, and ex- 
cising all frequencies which are harmonics of the input fre- 
quency wo- Note that the A* term of (4) is not removed 
by this process. This term is a random sequence with 
variance which is periodic at frequency WQ. The resulting 
sequence (with periodic components removed) is 

et — —Au)0Aic sm{w0kT, + 8) + nk (5) 

To estimate the variance of the components of (5), we 
square et and evaluate the expected value. 

E{e\}    =   E{Ä2u>lAlsin3(w0kT, + 8) + nl} 

B{(^ + „2) 

■( 

2 

A^lA\ 
2 

A2, ,2-2 

{2u0kT, + 28)\ (6) 

0 
A^jaj 

cos(2w0JbT, + 28) (7) 

The procedure for estimating the variance a\ is now ap- 
parent. The sequence {e3.} contains a discrete frequency 
component at twice the test frequency which has mag- 
nitude proportional to the desired variance. Once a\ is 
known, the variance of the additive noise component a\ 
may be estimated from the DC component of {ek}. 

The procedure is summarized in the following steps: 

1. Drive the converter input with a sinusoidal signal 
with frequency u0 = m(w,/N), where u, = 2r/Tt, 
N is the number of samples collected, and m is an 
integer. Selection of N as a power of 2, and m as 
an odd number makes the calculation of the FFT 
fast, and excites the converter uniformly across the 
desired states. 

2. Collect N samples, {yk : k = 0,1,..., N - 1}. 
Remove the periodic components of {yt} by taking 
an FFT, removing the DC, fundamental, and all sig- 
nificant harmonics of wo, and calculating the inverse 
tranform of the remainder. The resulting sequence 
is denoted {et}. 

3. Evaluate the FFT of the sequence {e\}. 

N-l 

En=J2 ^e-i2xntAV (8) 
t=o 

Let Co denote the DC term of the signal (Co = 
E0/N), and let Cj denote the magnitude of the 2o>o 
term (C2 = 2\E2m\/N). 

4. Calculate the desired estimates: 

0"A    = 

al 

2C2 

A2 w; 

Co — Cj 

(9) 

(10) 

In step 4, the value of A may be obtained by observing 
the wo term of the transform taken in step 2. While the 
theory holds for any input frequency, in practice wo must 
be chosen large so that the 2wo term of step 3 is well above 
the noise floor. Equation (7) predicts that the strength of 
the second harmonic term increases quadratically with wo- 

III. SIMULATION RESULTS 

To test the accuracy of the estimation procedure, a sim- 
ulation was developed which included a known amount 
of sample-time jitter. The equations giving the distortion 
terms of the ADC model are taken from [2]. Let x\ denote 
the (dithered) sample x(kT, — At) + dk, where dt denotes 
a random dither component which is added to the signal 
prior to sampling in order to randomize the quantization 
error. The output of the converter is determined as fol- 
lows: 

X2    =    a tanh (—) (11) 

X3    =    zj-Heia — d|aj2|i2 (12) 

X4    =    23+   1 —cosh f—J (13) 

yt    =    Q(a>4) (14) 
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Figure 1: Estimation of <rn. The solid line indicates the 
average estimate, and the dotted lines give ±3 standard 
deviation bounds. The dash-dot line indicates the actual 
value of CT„ for the simulated ADC. 
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Figure 2: Estimation of CT^. The solid line indicates the 
average estimate, and the dotted lines give ±3 standard 
deviation bounds. The dash-dot line indicates the actual 
value of a& for the simulated ADC. 

Equations (11) and (13) reflect amplitude distortion in the 
input and buffer amplifier stages of the converter. Deter- 
ministic sample-time offsets result in (12), which is deriv- 
able from a symmetrical quad-switching circuit following 
the analysis of Gray and Kistopoulas [3]. In (14), the 
function QQ is used to represent quantization to one of 
2n values for an n-bit converter. 

All of the results presented here were for a simulated 
8-bit converter sampling at 200 MSPS with a peak-to- 
peak full scale range of 2 V. The simulation parameters 
used were o=6=4,c = d = 3xl0 -li and 7.25. 
The parameters were chosen to give distortion terms which 
were roughly consistent with the measured distortion for 
the 8-bit converter tested in Section IV. The additive 
dither dt was chosen to be a Gaussian random variable 
with variance equal to the quantization noise power. This 
gives a theoretical value of trn = l/V'ö = 0.4082 LSBs. A* 
was also chosen to be Gaussian, with standard deviation 
&Ck — 5 psec. Test frequencies were varied from 10 MHz 
to 200 MHz with 50 trials at each frequency. For each 
trial, 4096 input samples were generated and used to form 
estimates of trn and crA. Step 2 of the estimation algorithm 
was implemented by removing the first 20 harmonics of the 
test signal frequency. Figures 1 and 2 illustrate the results. 
As expected, the estimate of a^ improves with increasing 
test signal frequency, as the second harmonic term of (7) 
comes out of the noise floor. Both estimates appear to be 
nearly unbiased for large test signal frequencies. 

IV. EXPERIMENTAL RESULTS 

The estimation procedure was implemented on a Tek- 
tronix AD-20 8-bit converter sampling at 204.8 MSPS. 
Examination of the spectrum (8) showed a significant 
component at f,/2 in addition to the expected terms at 
DC and 2u>o. The presence of this term suggested that 
the converter was actually a time-interleaved converter, 
employing two converters sampling alternately. To test 
the observation, the sample sequence was broken into two 
separate sequences-the first containing the odd numbered 
samples, and the second containing the even numbered 
samples. Each of these sample sequences displayed only 
the DC and 2wo terms predicted in Section II. 

The estimation algorithm was then implemented on 
each of these sub-sequences, resulting in two separate es- 
timates of crn and <rA. Step 2 of the algorithm was imple- 
mented by removing the largest 20 spurious signals in the 
transform of the sample sequence. Estimates were formed 
for input signal frequencies ranging from 100 MHz to 200 
MHz (No significant 2wo term was apparent at frequen- 
cies below 100 MHz). Input signal amplitudes were set at 
95% of the full-scale range of the converter. In all cases 
the converter was dithered using Gaussian noise sources 
with 100 MHz bandwidth and noise power equal to the 
ideal quantization noise power. This gives a theoretical 
value for an ideal converter of <rn = l/-\/6 = 0.4082 LSBs. 
Each estimate was obtained using 16384 samples (8192 
samples per sub-sequence). 

Figure 3 gives a plot of the second harmonic term Ca 
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Figure 3: Measured magnitude of Ci for various test fre- 
quencies. Dashed lines show the behavior predicted by 
the theoretical development for various values of <r&. 

from step 3 of the algorithm for the various test signal 
frequencies. Also shown are the theoretical curves for var- 
ious values of erA which are prediced by equation (7). The 
plots show fairly consistent results, indicating that the 
quadratic behavior of Cj as a function of w0 is being ob- 
served. 

The actual estimates of an and «r^ are shown in Fig- 
ures 4 and 5. Measured values of trn range consistently 
from 0.4 to 0.5 over the entire measurement band. These 
results are only slightly worse than those predicted for 
an ideal 8-bit converter, indicating a relatively low-noise 
converter. Sample time jitter measurements show sample 
time standard deviations on the order of 3 to 4 psec over 
the entire measurement band. 

V. CONCLUSIONS 

A straightforward test has been developed which allows for 
the measurement of random sample-time jitter in ADCs. 
The test is based on driving the converter using a high- 
frequency sinusoidal test signal. Simulation and experi- 
mental results have shown the test may provide accuracy 
on the order of 1 psec. 
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